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CAUCHY INTERNAL WAVE SCATTERING BY DENSITY FIELD INHOMOGENEITIES 

S. P. Budanov, A. S. Tibilov, and V. A. Yakovlev UDC 532.593 

The stationary problem of internal wave (IW) scattering by density field inhomogeneities 
was considered in a linear formulation in [i] in an unbounded medium with a constant Brunt- 
V~is~il~ frequency. The important role is shown for this mechanism in the IW energy redis- 
tribution between different modes. Domains are defined in which the scattered IW amplitude 
is substantially different from zero. The corresponding nonstationary problem is discussed 
in this paper. 

Let IW characterized by the density p~(r, t) and velocity U~(r, t) fields exist in a me- 
dium. At the time t = 0 local "mixing" (spoilage of the ~ and U~ field distributions) of 
the medium occur in a domain of space F I. Neglecting rotation of the earth and the viscosity 
forces in a Boussinesq approximation, this nonstationary problem has the form 

(p, U} = Q (V), V l,=0 IV+, r m,, 
=[gi, r~D,, (i) 

{p+, �9 r ~ D i, 
Lp {p, U} = ~ (p, U), Plt=o= Pi, r ~ D , ,  

�9 O g [kAp-- Va__Pl; L o ap _ Po N2w; ~ (p ,  U )  - -  - -  U V p ;  
where L u  ~-- ~ AU + ~'o ' Oz I --" Ot g 

Q (U)~-~_ -- curl curl t [(U.V) U]. 
The solution of the system (I) can be represented by the sum of two components, one of 

which describes the problem of the collapse of the intrusion zone in a stratified fluid, and 
the other the interaction of background IW with this zone. The collapse problem has been in- 
vestigated well (see, e.g., [2]). It is known [3] that the solution of the Collapse problem 
with viscosity taken into account for large times (the third stage of collapse) is a density 
field inhomogeneity in the form Of a spot of mixed fluid that exists sufficiently long, dis- 
sipates extremely slowly at the level of its density. We assume that the geometric size of 
the domain DI and the degree of fluid mixing in it are such that the concluding stage of col- 
lapse sets in sufficiently rapidly. Then, following [i], we consider that the domain D that 
occurs is a density field inhomogeneity that does not change with time and is at rest. Con- 
sequently, the problem of background IW interaction with the domain D can be considered as a 
background IW scattering problem by inhomogeneities of the density field Pi0 with initial con- 
ditions. Its solution can also be represented in the form of the sum of two components, one 
of which described the unperturbed IW field (we consider it known), and the other the intrin- 
sically scattered field characterized by the velocity us(r, t) and the density ps(r, t), where 
Uslt= 0 = 0 and PsIt=0 = 0. As in [i], we limit ourselves in this paper to a single scattering 
approximation (Born approximation) within whose framework U s and Ps satisfy the boundary value 
problem 

Lv{Ps, Us} = 0 ,  Ls{p s, Us} = ~(Pio,U+), Ps, Ush,, ~'--~0- (2) 
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As before [i], the requirement of smallness of the maximum scattered field amplitude in 
space and time as compared with the incident wave amplitude can be considered as the necessary 
condition for applicability of the Born approximation. For instance, for sufficiently large 
times this condition agrees with the appropriate conditions for the stationary solution [i]. 
In the general case of arbitrary times, the derivation of constructive constraints on the "pa- 
rameters of tlhe problem (degree of miscibility, size and shape of the scattering volume, etc.) 
is made difficult because of the complexity of the expression for Us(0s). This question should 
be the subject of a separate investigation and is not examined in this paper. Therefore, as- 
suming the single scattering approximation valid henceforth, we have the following problem for 
the vertical velocity field component from (2) 

0 2 

07 Aws + N$Aaws= --  N2Ah (Ur 

ow~[ = 0 ,  l~(r) - -  g Vpio 
w s [ t = ~  t=o Oo 2V ~ ' 

whose solution can be expressed in terms of the Green's function 

t 

w s (r, t )  = - -  N 2 S dt' ~ dr'G (r - -  r ' ,  t - -  t') A h [U 0 (r', t') ~ (r')] 
0 

(G(r, t) is the Green's function of the internal wave operator [4]). The spatial spectrum is 
here 

 aA' ~dt'Ur t')~ (A - -  A ' )G (At t'), (3 )  ~ (A, t) = ~ j (A', t - 

where h = {K, ~} is the vector of the wave numbers, and M is the Fourier transform of the 
function M(r, t) in the space variable. 

Following [i], for the subsequent analysis we make a number of assumptions to simplify 
the computations, but meanwhile conserve the generality sufficient for many applications: 

i) The primary field is a plane monochromatic wave propagating in the negative direction 
of the coordinate axes at an angle 0 < a 0 < 7/2 to the horizontal plane, i.e., 

2) 

k 
Ur t) = A o e x p { i [ k p  + l z  + c%t]}, r = ] / - k ~ . ~  N ~ N c o s c % ;  

l ,  r ~ D ,  
(r) = ~o] (r), ] (r) = 0, r ~ D, l~~ = eonst. 

Under the assumptions made above, (3) is simplified 

o(o 

t ,  t / > O ,  
o ( t ) =  o, t < o .  

(A, 

(A) = - x -  2v (Ao. ~o) 7(k + x,  Z + ~), 

The relationships 

sin N t  
~- (A,: t) = - -  0 (t) ~A~v 

D,(A,  t) = (2n)aAof(k + u)5(l + cz) 

were used in deriving this formula [6(x) is the Dirac delta function]. 

The change in the density ps(r, t)associated with the scattering 

(4) 

is easily calculated from the second equation of the system (2). It is seen from (4) that 
evolution of the scattered field in time is due to motions of two kinds, as is easily seen by 

247 



taking the Fourier transform, in time, of (4). Firstly, this is a set of plane waves with 
the usual dispersion relationship w = !NK/A (convergent and divergent waves) and, secondly, 
motions in the absence of a dispersion relation ("non-wave noise"). 

We consider the two-dimensional spatial spectrum of the density field ps(K, z, t) at 
different horizons z in greater detail. To do so we specify the kind of domain D. Let f(r) = 
fl(p)~(L - JzJ). Since the inverse Fourier transform of ~ with respect to ps(A, t) is suf- 
ficiently awkward, we limit ourselves to two limit cases Nt << 1 and >> 1 in analyzing the two- 
dimensional spectrum ps(K, z, t). 

For sufficiently small times, the principal term in the expansion of the two-dimensional 
spectrum ps(K, z, t) in the parameter Nt << 1 has the form 

[ ,o. ] 
P s ( Z ' z ' t ) = - - 6 P ( ~ ) O ( L - - l z [ ) ~  I + - T w ( N t )  6 ~NJ  (Nt)~ + 

(~t)  8 
{0 ([ zl - -  L) e - Iz lu [0 (Z) ~t sin (L~,) + 0 (-- z) ~, sin (L~l)] + + P (~) x' + ~' 

+ 0 ( L - -  I zl) ue~z: �9 ' - -  -~- (-- t ) m ~ m e ( - - 1 ) m ( z x + L ~ a - - m )  , 

where  P(K) = - ( p 0 / S g ) N ( A o B o ) f l ( r  + k ) ;  S• = ~ • iK. 

I t  i s  s een  from t h e  e x p r e s s i o n  o b t a i n e d  t h a t  f o r  s m a l l  t i m e s  t h e  p e r t u r b a t i o n  o c c u r s  in  
t h e  whole  s p a c e  a t  once  ( b e c a u s e  o f  t h e  f l u i d  i n c o m p r e s s i b i l i t y  a p p r o x i m a t i o n )  and grows in  
p r o p o r t i o n  t o  (Nt )  ~ o u t s i d e  t h e  domain o f  i n h o m o g e n e i t y .  The s p e c t r u m  a m p l i t u d e  i s  maximal 
in  t h e  l a y e r  o c c u p i e d  by t h e  i n h o m o g e n e i t y ,  and d e c r e a s e s  e x p o n e n t i a l l y  above  and be low t h i s  
layer, more rapidly as the horizontal wave number increases. In the general case the maximum 
in the direction K does not agree with the direction of the vector k. 

To analyze Ps(g, z, t) for long times, we use the method of stationary phase in the large 
parameter Nt >> i. In conformity with this method, poles of the integrand and stationary phase 
points will yield the main contribution to ps(~, z, t). Consequently, it is convenient to 
separate the asymptotic of the function into two components for large times: p~(g, z, t) 
(contribution from the poles) and p2(K, z, t) (contribution from the stationary points): 

~,(~, ~, t) = ~(~, ~, t) + ~(~, ~, t), 

where 

' s i n ( - ~ ( L - -  Iz I) ) 
+ 0 ( L - - [ z J )  O(• ~_~(--t)  '~ ~la-m X 

m----1 

X --  0 (u o - -  • ~ "qm 

I~I. 1 b - -  N--T' ~h'~-~-/:F•176 • 1 7 6  - -  ~- 

2 

P2 = 7 P (u) a (ch) 0/4 

• O(z) ~ + ( _ 1 ) ~ %  - l - ( - 1 )  ~ %  

)< 

X 
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b = c o n s t ;  •215 ~ • = qT-) (ch-- • c o s ? - -  ~ ~ ,  

c~ = ~-~ V ~  cos ; s (~,0 = % 

It is seen from the expression obtained that for long times when IPll >> [P21 the scattered 
field frequency tends to the incident field frequency. The spectrum maximum here occurs at 
K ~ k and corresponds, in the propagation direction, to the angles ~ = • ~ = • 0 + v. As 
the time grows further the spectrum maximum is increased and the function ps(K, z, t) tends 
to the stationary solution of the problem [I]. The spectrum has an upper bound at each time 
on a given horizon, and its upper boundary increases as time elapses (i.e., as time lapses 
all the shorter waves arrive at the given horizon). In the layer occupied by the inhomogene- 
ity a whole set of horizontal wave numbers exists at once. The appearance of the component 
P2 in the asymptotic of the spectrum is due exclusively to the presence of initial conditions. 
Consequently, the component of the scattered field spectrum depends on the time complexly. As 
time elapses the frequency of oscillation of the component P2 changes continuously for a given 
wave number (a given wavelength), to form two groups of waves with the frequencies NN and 
~N ~. Both these wave groups decrease as t and < grow, where the vibrations with frequency 
w ~ N/K-b-"die out" more slowly with time than those with the frequency w ~ N. It is interest- 
ing to note that as ~ ~ N~the vertical wave number ~ ~ /~-~-can also be sufficiently large. 
This circumstance can apparently be related to the mechanism for the origination of a long- 
lived fine vertical structure: its formation occurs under the effect of the scattered waves, 
where the fine vertical structure is formed on all the higher (lower) horizons as time lapses. 

Thus, the IW scattering pattern by a density field inhomogeneity is represented as fol- 
lows (for definiteness, we speak about the density field parameters). At the time of the ap- 
pearance of inhomogeneities in the medium, density field perturbations occur that damp out ex- 
ponentially with distance from the scattering volume. Far from the inhomogeneities, the per- 
turbation amplitude is isotropic in space and grows in proportion to (Nt) 3. As time passes, 
the scattered field acquires the nature of a wave, where long-wave vibrations appear first at 
a given horizon, and then shorter and shorter waves reach it. The two-dimensional spatial 
spectrum of the density field is deformed continuously: the oscillation amplitude damps out 
with time while their distribution becomes anisotropic in space, being concentrated near the 
directions ~ ~ • 0 and ~ ~ • 0 + ~ as Nt grows. In the limit as Nt § ~ the scattered field 
emerges in the stationary regime. Its amplitude is substantially nonzero near the direction 

and decreases with distance from the inhomogeneity. The time dependence here has the form 
iw0t 

e ('!standing" wave). 

Therefore, the nonstationary solution of the IW scattering problem by localized density 
field inhomogeneities affords the possibility of tracking the energy redistribution in the IW 
spectrum in time, and thereby expanded the representation of this mechanism as compared with 
[I]. Unfortunately, a more detailed investigation of the nonstationary solutions is impossi- 
ble in even the simplest formulation that we proposed because of the vastness of the calcula- 
tions that occur. ~onsequently, a further analytical analysis of both the stationary and non- 
stationary solutions of the IW scattering problem within the framework of the model considered 
is inexpedient in our opinion. Most promising by clarification of the scattered field "geom- 
etry" and its evolution in time is the passage to computations on an electronic computer with 
the use of the asymptotic expressions. Such computations will assist in obtaining a formula- 
tion and solution of one of the most interesting problems associated with IW scattering: 
clarification of the zones of increase in the local IW instability and their degeneration into 
turbulence. The important theoretical aspect of the solution of this problem is the inclusion 
of viscosity in the model we considered and taking account of the spatial variability of the 
Brunt-V~is~il~ frequency (taking account of the fine structure). 
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